Защита от коррозии: промышленные и бытовые способы (+32 фото)

Коррозия. Виды и способы защиты от коррозии

Коррозия материалов является одной из важных мировых проблем. Практика показывает, что только прямые безвозвратные потери металла от коррозии составляют 10…12% всей производимой стали, при этом суммарный ущерб в промышленных странах достигает 4-5% от национального дохода. Ведь корродирует не только черный металл ( сталь, чугун, железо и некоторые его сплавы ), но и бетон, дерево, камень, даже полимеры. Наиболее интенсивная коррозия наблюдается в зданиях и сооружениях химических производств, что объясняется действием различных газов, жидкостей и мелкодисперсных частиц непосредственно на строительные конструкции, оборудование и сооружения, а также проникновением этих агентов в грунты и действием их на фундаменты. Агрессивному воздействию подвержено до 75% строительного фонда. Коррозия металла приводит к ослаблению конструктива и, как следствие, снижению безопасности эксплуатации сооружений.

Коррозия — процесс разрушения материалов вследствие химических или электрохимических процессов. По характеру самого процесса коррозию разделяют на две основные группы : химическую и электрохимическую. Химическая коррозия протекает в не электролитах – жидкостях, не проводящих электрического тока и в сухих газах при высокой температуре. Электрохимическая коррозия происходит в электролитах и во влажных газах и характеризуется наличием двух параллельно идущих процессов: окислительного (растворение металлов) и восстановительного (выделение металла из раствора).

По внешнему виду коррозию различают: пятнами, язвами, точками, внутрикристаллитную, подповерхностную. По характеру коррозионной среды различают следующие основные виды коррозии: газовую, атмосферную, жидкостную и почвенную.

Газовая коррозия происходит при отсутствии конденсации влаги на поверхности. На практике такой вид коррозии встречается при эксплуатации металлов при повышенных температурах.

Атмосферная коррозия относится к наиболее распространенному виду электрохимической коррозии, так как большинство металлических конструкций эксплуатируются в атмосферных условиях. Коррозия, протекающая в условиях любого влажного газа, также может быть отнесена к атмосферной коррозии.

Жидкостная коррозия в зависимости от жидкой среды бывает кислотная, щелочная, солевая, морская и речная. По условиям воздействия жидкости на поверхность металла эти виды коррозии получают добавочные характеристики : с полным и переменным погружением, капельная, струйная. Кроме того, по характеру разрушения различают коррозию равномерную и неравномерную.

По степени воздействия на металлы коррозионные среды делятся на неагрессивные, слабоагрессивные, среднеагрессивные и сильноагрессивные.

Бетон и железобетон находят широкое применение в качестве конструкционного материала при строительстве зданий и сооружений химических производств. Но они не обладают достаточной химической стойкостью против действия кислых сред. Свойства бетона и его стойкость в первую очередь зависит от химического состава цемента из которого он изготовлен. Наибольшее применение в конструкциях и оборудовании находят бетоны на портландцементе. Причиной пониженной химической стойкости бетона к действию минеральных и органических кислот является наличие свободной гидроокиси кальция (до 20%), трехкальциевого алюмината (3CaO×Al2O3) и других гидратированных соединений кальция.

Коррозия бетона происходит тем интенсивнее, чем выше концентрация водных растворов кислот. При повышенных температурах агрессивной среды коррозия бетонов ускоряется. Несколько более высокой кислотостойкостью обладает бетон, изготовленный на глиноземистом цементе, из-за пониженного содержания оксида кальция. Кислотостойкость бетонов на цементах с повышенным содержанием оксида кальция в некоторой степени зависит от плотности бетона. При большей плотности бетона кислоты оказывают на него несколько меньшее воздействие из-за трудности проникновения агрессивной среды внутрь материала.

Щелочестойкость бетонов определяется главным образом химическим составом вяжущих, на которых они изготовлены, а также щелочестойкостью мелких и крупных заполнителей.

Увеличение срока службы строительных конструкций и оборудования достигается путем правильного выбора материала с учетом его стойкости к агрессивным средам, действующим в производственных условиях. Кроме того, необходимо принимать меры профилактического характера. К таким мерам относятся герметизация производственной аппаратуры и трубопроводов, хорошая вентиляция помещения, улавливание газообразных и пылевидных продуктов, выделяющихся в процессе производства; правильная эксплуатация различных сливных устройств, исключающая возможность проникновения в почву агрессивных веществ; применение гидроизолирующих устройств и др.

Непосредственная защита металлов от коррозии осуществляется нанесением на их поверхность неметаллических и металлических покрытий либо изменением химического состава металлов в поверхностных слоях: оксидированием, азотированием, фосфатированием.

Для защиты поверхностей от коррозии существуют разнообразные покрытия: лакокрасочные (антистатичные и армированные, полиуретановые, акриловые, порошковые эпоксидно – полиэфирные, органосиликатные и кремнийорганические), металлизационные с цинком, алюминием, медью и комбинациями этих металлов. Это краски, лаки, эмали, тонкодисперсные порошки, пленки. Лакокрасочные покрытия вследствие экономичности, удобства и простоты нанесения, хорошей стойкости к действию промышленных агрессивных газов нашли широкое применение для защиты металлических и железобетонных конструкций от коррозии. Защитные свойства лакокрасочного покрытия в значительной степени обуславливаются механическими и химическими свойствами, сцеплением пленки с защищаемой поверхностью.

Лакокрасочные материалы в зависимости от назначения и условий эксплуатации делятся на десять групп:

  • А – покрытия стойкие на открытом воздухе;
  • АН – то же, под навесом;
  • П – то же, в помещении;
  • Х – химически стойкие;
  • Т – термостойкие;
  • М – маслостойкие;
  • В – водостойкие;
  • ХК – кислотостойкие;
  • ХЩ – щелочестойкие;
  • Б – бензостойкие.

Наиболее распространены в промышленности покрытия металлические, неметаллические (органического и неорганического происхождения), а также покрытия, образованные в результате химической и электрохимической обработки металла.

Выбор вида покрытия зависит от условий, в которых используется защищаемое изделие (перепад температур, повышенная влажность, морская или пресная вода, щелочь, кислота, соли металлов, радиация, электроток и огонь), и технологичность возможностей формирования покрытия.

Наиболее часто применяемые способы защиты металлов:

  • легирование;
  • электрохимическая защита;
  • покрытие металлами;
  • защитные пленки.

Легирование – это введение в металл на стадии его производства определенного количества специальных добавок, например – хрома или марганца. Это придает сталям особые свойства, необходимые для использования в сложных условиях. Для возведения современных зданий, особенно повышенной этажности, необходима высококачественная атмосферостойкая легированная сталь, например, погодоустойчивая марка COR-TEN. Такой материал позволяет решить проблемы эксплуатации сооружений даже в экстремальных климатических условиях.

Одними из самых популярных и относительно недорогих мер защиты от коррозии сегодня являются методы, изменяющие химический состав металла в поверхностных слоях. Как правило, это электрохимические способы нанесения покрытий на металл. Наиболее известный процесс называется оцинковкой, которая в зависимости от способа обработки металла делится на горячую и холодную. В первом случае обрабатываемый материал погружается в специальную ванну. Затем под воздействием переменного тока осуществляется его обработка в растворе фосфата цинка при плотности тока 4 А/дм², напряжении 20 В и температуре 600-700ºС. В результате электрохимической реакции образуется ферроцинковый сплав. При применении второго способа на подготовленную поверхность стального листа наносится защитный слой из цинка. Оцинковка толщиной 0,3 мм позволяет обеспечить защиту обработанной поверхности металла более чем на 30 лет.

Итальянская фирма «Metalnastri» разработала метод, сочетающий в себе качество горячего и технологичность холодного цинкования. Это простая идея наклейки цинковой фольги на стальную поверхность. Высокую антикоррозийность создает сплошной цинковый слой, а токопроводящие клеевые композиции обеспечивают и электрохимическую защиту поверхности.

ЦНИИПСК им. А.П. Мельникова предложил метод термодиффузионного цинкования (ТДЦ) метизных и малогабаритных изделий из стали и чугуна. Метод заключается в нагреве металлоизделий в среде, содержащей порошок цинка. В результате на поверхности изделия образуется цинковое покрытие с хорошими защитными и декоративными свойствами. Технологический процесс такого цинкования экологически чист и практически безотходен. В качестве сырья используются отечественные материалы, не требующие специальной обработки. ТДЦпокрытие обладает высокой адгезией и износостойкостью, обеспечиваемой в результате взаимной диффузии железа и цинка. Срок службы покрытия в 1,5-4 раза больше по сравнению с традиционными цинковыми покрытия.

Широкое распространение цинковых покрытий обусловлено их хорошими химическими свойствами. Для стали (катод) цинк является анодом, за счет этого образуется гальваническая пара, имеющая высокие защитные свойства, хорошо сохраняемые даже при малой толщине слоя. Скорость разрушения цинкового покрытия составляет примерно 1-10 мкм в год в зависимости от различных факторов. Оцинковка может осуществляться совместно с другими металлами – с добавлением алюминия (Al) или железа (Fe). В настоящее время в России широко используется сталь Galfan c цинкоалюминиевым покрытием и сталь Galvannealed с цинкожелезным покрытием.

При покрытии другими металлами в зависимости от вида коррозии покрывающий слой наносят различными способами. В качестве покрывающего материала часто используется хром или никель. Хромирование – электролитическое нанесение покрытия из хрома на поверхность металлического изделия. Никелирование, также нанесение на поверхность изделий никеля толщиной от 2 до 50 мкм.

На практике обычно применяются следующие методы:

  • Погружение изделий в расплавленный металл (горячий способ). Заключается в том, что изделия погружают в ванну с расплавленным металлом или же нагретую поверхность деталей обволакивают расплавленным металлом.
  • Метод термической диффузии. Основан на диффузии (проникновении) в поверхностные слои деталей присадок при высокой температуре. Диффузионные покрытия наносятся при нагреве деталей в твердой (порошкообразной), жидкой или газообразной фазе металла.
  • Металлизация. Заключается в нанесении (распылении) на поверхность деталей слоя присадок расплавленного металла с помощью пульверизаторов.
  • Контактный метод осаждения металла. Осуществляется без применения внешнего источника тока за счет вытеснения менее благородными металлами более благородных из растворов их солей. Толщина таких покрытий невелика и защитные свойства их невысоки.

Следует отметить, что металлические покрытия достаточно хорошо защищают металл от коррозии. Однако при нарушении защитного слоя она может протекать даже более интенсивно, чем без покрытия. Поэтому в промышленности для улучшения свойств металлических поверхностей, обработанных электротехническим методом, используется способ нанесения защитных покрытий из полимерных материалов. Такие продукты получили широкое распространение в строительной индустрии. Использование полимерных материалов для антикоррозионной защиты обусловлено их уникальными физико-химическими показателями. Полимеры имеют небольшой удельный вес, высокую стойкость к не механическим воздействиям (соприкосновение с водой, солями, щелочами или кислотами). Обладают пластичностью и светостойкостью. В настоящее время наибольшее распространение получили « трехслойные» продукты с двойным уровнем защиты. Первый уровень – непосредственно оцинковка, второй – полимер. Благодаря такой структуре сталь становится стойкой к воздействию агрессивных сред, механическим повреждениям и ультрафиолетовому изучению. Срок их службы составляет порядка 50 лет, в зависимости от качества и толщины покрытия. Необходимо также учесть, что высокие эксплуатационные характеристики таких материалов напрямую зависят от качества оцинковки исходного металла, а потребительские качества – от применяемого в составе полимера.

Альтернативой полимерным материалам являются конструкционные пластмассы и стеклопластики, получаемые на основе различных синтетических смол и стекловолокнистых наполнителей. В настоящее время выпускается значительный ассортимент материалов, особое место среди них занимает полиэтилен. Он инертен во многих кислотах, щелочах и растворителях, а также имеет высокую теплостойкость.

Другим направлением использования полиэтилена в качестве химически стойкого материала является порошковое напыление. Применение полиэтиленовых покрытий объясняется их дешевизной и хорошими защитными свойствами. Покрытия легко наносятся на поверхность различными способами, в том числе пневматическим и электростатическим распылением.

Защитные пленки. Способ заключается в нанесении на металл защитной оболочки из различных компонентов в следующей последовательности: шпатлевка, грунтовка, краска, лак или эмаль.

Для противокоррозионной защиты конструкций зданий и сооружений (ферм, ригелей, балок, колонн, стеновых панелей), а также наружных и внутренних поверхностей емкостного технологического оборудования, трубопроводов, газоводов, воздуховодов вентиляционных систем, которые в процессе эксплуатации не подвергаются механическим воздействиям абразивных частиц, применяют лакокрасочные покрытия. Такие покрытия наиболее эффективны для защиты от атмосферной коррозии. Однако срок службы лакокрасочных покрытий невелик и составляет 4-5 лет. Для повышения коррозионной стойкости лакокрасочных покрытий используют различные противокоррозионные пигменты.

Следует назвать антикоррозионные пигменты фирмы SNCZ (Франция): фосфаты цинка; модифицированные фосфаты цинка; фосфаты, не содержащие цинк; полифосфаты; феррит кальция, а также тетраоксихромат цинка; хроматы стронция, цинка, бария.

Наиболее часто используются фосфаты цинка PZ 20 и PZ W2 в большинстве лакокрасочных систем: органоразбавляемых, водоразбавляемых, воздушной и горячей сушки.

Там, где нельзя использовать противокоррозионные пигменты, содержащие цинк (контакт с пищевыми продуктами), используются пигменты на основе щелочеземельных фосфатов Новинокс РАТ 30, Новинокс РАТ 15 и Новинокс РС01.

Металлоконструкции, подвергающиеся воздействию соляного тумана, могут быть защищены лакокрасочными материалами, содержащими фосфат щелочеземельных металлов. Фосфат щелочеземельных металлов – нетоксичный пигмент, что повышает экологичность лакокрасочного покрытия и увеличивает сферу его применения.

Тетраоксихромат цинка ТС 20, хромат стронция L203E и хромат цинка CZ20 – применяются в лакокрасочных материалах, использующихся в авиационных, судовых покрытиях, а также в составе адгезивов для легких сплавов.

Для защитных покрытий, эксплуатирующихся в условиях высоких температур (до 600ºС), используются хромат бария М 20 и феррит кальция FC 71. Применение феррита кальция для защитных покрытий – новое направление в лакокрасочных материалах. В табл. 1 представлена стойкость различных лакокрасочных материалов (ЛКМ) к агрессивным средам.

Таблица 1. Стойкость лакокрасочных материалов

ЛКМ, по типу связующегоСтойкость к агрессивным средам
ВодаВодяной парРастворителиРазбавленные растворителиКислотыРазбавленные кислотыЩелочиРазбавленные щелочи
Винилхлоридные+++±±±+±+
Хлоркаучуковые+++±±±+±+
Акриловые±++±±±+±+
Алкидные±+±+±±±±
Битумные++++±±±±±+
ПУ ароматические±+++++++±±
ПУ алифатические+++±+±+±++
Эпоксиднополиуретановые++++±±±++++
Эпоксидные+++++++±+++++
Цинк-силикатные+++++++++++
Перхлорвиниловые++++±±±±±+

Примечания: ++ отлично, + хорошо, ± удовлетворитльно

Наиболее распространенным способом защиты от коррозии строительных конструкций, сооружений и оборудования является использование неметаллических химически стойких материалов: кислотоупорной керамики, жидких резиновых смесей, листовых и пленочных полимерных материалов (винипласта, поливинилхлорида, полиэтилена, резины), лакокрасочных материалов, синтетических смол и др. Для правильного использования неметаллических химически стойких материалов необходимо знать не только их химическую стойкость, но и физико-химические свойства, обеспечивающие условия совместной работы покрытия и защищаемой поверхности. При использовании комбинированных защитных покрытий, состоящих из органического подслоя и футеровочного покрытия, важным является обеспечение на подслое температуры, не превышающей максимальной для данного вида подслоя.

Для листовых и пленочных полимерных материалов необходимо знать величину их адгезии с защищаемой поверхностью. Ряд неметаллических химически стойких материалов, широко используемых в противокоррозионной технике, содержит в своем составе агрессивные соединения, которые при непосредственном контакте с поверхностью металла или бетона могут вызвать образование побочных продуктов коррозии, что, в свою очередь, снизит величину их адгезии с защищаемой поверхностью. Эти особенности необходимо учитывать при использовании того или иного материала для создания надежного противокоррозионного покрытия.

Читайте также:  Картина красками по номерам: техники рисования (+24 фото)

Как защитить металл от коррозии в домашних условиях

Минувший век характеризуется возникновением огромного количества принципиально новых материалов, нашедших широкое применение в разнообразнейших отраслях человеческой жизнедеятельности, включая и строительную. Собственно говоря, в материаловедении произошла подлинная революция, причем значительное внимание было уделено вопросам предотвращения коррозии металлов и разработке материалов, необходимых для достижения этой цели. Так, например, появились различные композитные панели, гальванические покрытия, облицовочные материалы из строительной керамики (керамогранит, облицовочный кирпич и т. д.), прочие современные строительные материалы, не нуждающиеся в защите путем дополнительной обработки.

Применение в строительстве металлических изделий, как и прежде, остается востребованным чрезвычайно широко. Перила, декоративные решетки и ограждения даже сегодня чаще всего изготавливают из металлов, которые подвержены коррозии. Так, отделка фасадов, которую в наше время осуществляют посредством использования тех или иных материалов, устойчивых к воздействию атмосферной влаги, все же не обходится без применения крепежа, узлов ввода-вывода коммуникаций, иных скрытых элементов. Данные компоненты наиболее часто выполняются из металла, а потому жизненно нуждаются в антикоррозионной защите.

Хорошо известно, что основной причиной коррозии является вода, которая неминуемо попадает на металлические поверхности даже в помещениях. А потому наиболее эффективным и, пожалуй, единственным способом защиты металлов, подверженных коррозии, является нанесение изолирующих составов и химических покрытий.

К традиционным способам предохранения металлических изделий от коррозии относится механическая зачистка старой ржавчины, а также нанесение преобразователей ржавчины, позволяющих удалить ее остатки, после чего поверхность металла покрывается грунтом и лакокрасочным защитным слоем.

Некоторые из производителей лакокрасочных материалов рекомендуют осуществить завершение этого процесса путем нанесения поверх слоя краски специального защитного состава. При этом основное внимание необходимо обратить на то, чтобы грунтовки, краски и лаки были качественными. На упаковках с грунтами указываются виды специальных добавок, улучшающих свойства состава: изолирующих, фосфатирующих, пассивирующих и протектирующих.

Как видим, окраска металлических поверхностей «по старинке» — процесс достаточно сложный и трудоемкий, отнимающий много сил и времени. Ныне компании-производители рекомендуют разработанные ими антикоррозионные составы, отличающиеся большей универсальностью, применение которых позволяет одновременно решать не какую-либо одну, а сразу несколько задач. Наиболее популярными среди потребителей являются так называемые средства «два в одном» и «три в одном». Краска «два в одном» сочетает в себе находящиеся в одной емкости грунтующий и окрашивающий составы, при помощи которых возможно выполнение как грунтования, так и окончательной окраски металлических поверхностей.

Нередко производителями подобных красок рекомендуется использование составов типа «два в одном» по предварительно огрунтованным поверхностям, работающим в агрессивных средах, к примеру для кровли.

Композиции «три в одном», кроме грунта и краски, включают в свой состав также и преобразователь ржавчины. Их целесообразно использовать при окрашивании сильно заржавевших поверхностей, при этом необходимо удалить лишь верхний рыхлый слой ржавчины. На упаковках подобных составов обычно можно видеть надпись — непосредственно на ржавчину.

Может ли вода защитить металл от коррозии?

Казалось бы как вообще такое возможно? Этого не может быть, потому что этого быть не может никогда! Однако прогресс не стоит на месте. Он стремительно движется вперед во всех отраслях, в т. ч. и в сфере разработок новых видов лакокрасочных материалов.

Преимущества, которыми обладают лакокрасочные материалы (ЛКМ) на основе водных полимеров, способствуют ежегодному росту их производства и применения. На состоявшейся 3–4 декабря 2013 г. в г. Дюссельдорфе (Германия) конференции European Coatings Conference «Waterborne coatings» были рассмотрены достижения, проблемы и пути их решения в области водных ЛКМ.

Высокое качество водных 2К полиуретановых систем в сочетании с низкой эмиссией растворителей вызывает большой спрос промышленности. Эти материалы успешно зарекомендовали себя во многих сегментах рынка, поскольку они позволяют преодолеть разрыв между растущей потребностью в «зеленых» решениях и требованиями к качеству со стороны промышленности и профессионалов. Поставщики лакокрасочных материалов (ЛКМ) постоянно совершенствуют качество водных систем, а сырьевая отрасль развивает инновационные концепции как для смол, так и для отвердителей.

В докладе д-ра Кристофа Ирла (Christoph Irle), Bayer Material Science (Германия), особое внимание было уделено производству и надежности таких составов. Рассмотрение этих вопросов в дальнейшем поможет получить водные 2К системы, близкие к самой высокой отметке, которая уже многие десятилетия установлена для 2К полиуретановых систем. Продолжил тему полиуретанов д-р Норберт Питшман (Norbert Pietschmann), Institute fur Lack und Fabric (Германия), выступив с докладом «Водные УФ-отверждаемые ЛКМ для защиты стали от коррозии». При испытаниях противокоррозионных свойств пигментов, ингибиторов, связующих или их комбинаций он использовал электрохимические измерения, обеспечивающие более быстрое получение результатов. Этим методом
было установлено, что оптимальная комбинация связующего состоит из смеси УФ-отверждаемых и физически высыхающих дисперсий. Кроме того, был найден подходящий и быстрый способ выбора антикоррозионного пигмента и ингибитора. На основе предварительных исследований могут быть созданы модельные рецептуры с отличной адгезией и коррозионной стойкостью. После нанесения на сталь испарения влаги и УФ-отверждения были испытаны на стойкость к соляному туману и конденсации влаги. Электрохимические исследования подтвердили отличную адгезию и устойчивость к коррозии, однако это было получено только на стальных поверхностях с цинкфосфатным подслоем.

Защита металла от коррозии в домашних условиях

Существуют ли «народные» средства против ржавчины?

И обычное железо, и даже высококачественная сталь во влажном воздухе, который наверняка присутствует в гаражах, сараях и прочих подсобных помещениях подвергаются коррозии — постепенно покрываются буро-коричневой рыхлой пленкой ржавчины. Порой абсолютно новая вещь, случайно оставленная под открытым небом или «забытая» на зиму на даче, покрывается неприятной на вид бурой коростой. Ржавчина, которая состоит из смеси оксида железа Fe2O3 и метагидроксида железа FeO(OH), не защищает его поверхность от дальнейшей «агрессии» со стороны кислорода воздуха и воды, и со временем некогда прочный железный предмет разрушается (очень часто полностью).

Секреты удаления ржавчины есть. Ржавчину проще всего снять обработкой разбавленным водным раствором соляной или серной кислоты, содержащим ингибитор кислотной коррозии уротропин. Ингибиторы (от латинского «ингибео» — останавливаю, сдерживаю) — вещества, тормозящие химическую реакцию (в данном случае реакцию растворения металла в кислоте). Но ингибитор коррозии не мешает взаимодействию кислоты с оксидом и гидроксидом железа, из которых состоит ржавчина.

Если заржавели оконные шпингалеты, мелкие детали велосипеда, болты или гайки, их погружают в 5% раствор кислоты с добавкой 0,5 г уротропина на литр, а на крупные вещи такой раствор наносят кистью.

Использовать растворы сильных кислот без ингибитора рискованно: можно растворить не только ржавчину, но и само изделие, поскольку железо — активный металл и взаимодействует с сильными кислотами с выделением водорода и образованием солей. В качестве ингибитора кислотной коррозии при удалении ржавчины можно использовать и картофельную ботву. Для этого в стеклянную банку кладут свежие или засушенные листья картофеля и заливают 5-7%-й серной или соляной кислотой так, чтобы уровень кислоты был выше примятой ботвы. После 15-20-минутного перемешивания содержимого банки кислоту можно сливать и использовать для обработки ржавых железных изделий.

Преобразователь ржавчины превращает ее в прочное покрытие поверхности коричневого цвета. На изделие кистью или пульверизатором наносят 15-30%-й водный раствор ортофосфорной кислоты и дают изделию высохнуть на воздухе. Еще лучше использовать ортофосфорную кислоту с добавками, например, 4 мл бутилового спирта или 15 г винной кислоты на 1 л раствора ортофосфорной кислоты. Ортофосфорная кислота переводит компоненты ржавчины в ортофосфат железа FePO4 , который создает на поверхности защитную пленку. Одновременно винная кислота связывает часть производных железа в тартратные комплексы.

Металлические поверхности, сильно изъеденные ржавчиной, обрабатывают:

  • смесью 50 г молочной кислоты и 100 мл вазелинового масла. Кислота превращает метагидроксид железа из ржавчины в растворимую в вазелиновом масле соль — лактат железа. Очищенную поверхность протирают тряпочкой, смоченной вазелиновым маслом;
  • раствором 5 г хлорида цинка и 0,5 г гидротартрата калия в 100 мл воды. Хлорид цинка в водном растворе подвергается гидролизу и создает кислую среду. Метагидроксид железа растворяется за счет образования в кислой среде растворимых комплексов железа с тартрат-ионами;

Отворачивать приржавевшие гайки помогает смачивание керосином, скипидаром или олеиновой кислотой. Через некоторое время гайку удается отвернуть. Затем можно поджечь керосин или скипидар, которым ее смачивали. Обычно этого достаточно для разъединения гайки и болта. Самый последний способ: к гайке прикладывают сильно нагретый паяльник. Металл гайки расширяется, и ржавчина отстает от резьбы; теперь в зазор между болтом и гайкой можно впустить несколько капель керосина, скипидара или олеиновой кислоты, и на этот раз гайка отвернется ключом.

Есть и другой способ разъединения ржавых гайки и болта. Вокруг заржавевшей гайки делают «чашечку» из воска или пластилина, бортик которой выше уровня гайки на 3-4 мм. Заливают в чашечку разбавленную серную кислоту и кладут кусочек цинка. Через сутки гайка легко отвернется ключом. Чашечка с кислотой и металлическим цинком на железном основании — это миниатюрный гальванический элемент. Кислота растворяет ржавчину, и образовавшиеся катионы железа восстанавливаются на поверхности цинка; в то же время металл гайки и болта не растворяется в кислоте до тех пор, пока у кислоты есть контакт с цинком, поскольку цинк более активный в химическом отношении металл, чем железо.

Чтобы предохранить от ржавления столярный или слесарный инструмент, его смазывают с помощью кисточки раствором 10 г воска в 20 мл бензина. Воск растворяют в бензине на водяной бане, не используя открытого огня (бензин огнеопасен).

Полированный инструмент защищают, нанося на его поверхность раствор 5 г парафина в 15 мл керосина. А старинный рецепт мази для защиты металла от ржавчины таков: растапливают 100 г свиного жира, добавляют 1,5 г камфоры, снимают с расплава пену и смешивают его с графитом, растертым в порошок, чтобы состав стал черным. Остывшей мазью смазывают инструмент и оставляют его на сутки, а потом полируют металл шерстяной тряпочкой.

Чтобы в будущем не мучиться, отворачивая крепежные изделия с проржавевшей резьбой, ее заранее смазывают смесью вазелина с графитовым порошком. Вместо вазелина можно взять и любую другую жировую смазку нейтрального или слабощелочного типа. Болты и гайки на такой смазке легко отворачиваются даже через несколько лет пребывания под открытым небом.

Другие публикации

Важные характеристики и функции защитных фасадных лакокрасочных материалов
Окраска минеральных поверхностей фасадов зданий обычно представляется более простой задачей, чем является на.

Как предотвратить коррозию автомобиля

Со времени создания первого автомобиля основным материалом для его производства остается металл, который подвержен коррозии. Особенно часто страдают от ржавчины машины, пребывающие в сложных погодных условиях. Всевозможные осадки, высокая влажность воздуха, соль от гололеда на дорогах и просто пылинки — негативно воздействуют на транспортное средство, в том числе и оставленное в гараже.

Виды защиты от коррозии

Чтобы предотвратить развитие коррозии, можно использовать пассивный или активный метод. В первом случае металл будет абсолютно изолирован от влияния внешней среды. Во втором — его обрабатывают особыми растворами, которые предохраняют автомобиль со всех сторон.

Самый эффективный способ пассивной защиты от ржавчины —лакокрасочное покрытие. Но в ходе эксплуатации на поверхности появляются трещинки и сколы, в которых образуется ржавчина.

Коррозия чаще всего появляется в труднодоступных местах кузова, там, где его сложно чистить от грязи и соли — под крыльями, в щелях молдингов и т. п. Но все равно необходимо приложить усилия, чтобы удалить из таких участков грязь, иначе она, удерживая влагу, создаст условия для возникновения ржавчины. Заслуживает внимание и днище средства передвижения.

Чаще всего автолюбители используют такие пассивные средства защиты как особые мастики, которые наносят толстым слоем на днище машины. Но поскольку мастика не попадает в мелкие щелки, перед ее применением автомобиль обрабатывают антикоррозийным веществом.

Такой товар широко представлен в ассортименте торговых точек, разница заключается в стоимости, качестве и назначении — для иномарки или автомобиля отечественного производства. Наиболее востребованным средством является Мовиль, который отличается высокой степенью проникновения и отлично обрабатывает днище, стыки и соединения элементов кузова. Он имеет свойство вытеснять влагу, образуя слой из воска на обработанной поверхности.

Для защиты дверей, лонжеронов, стоек и других деталей хорошо подходит особый автоконсервант. Он способен бороться и с уже проявившейся ржавчиной.

Чтобы избежать коррозии части кузова, которая подвергается сильным абразивным атакам, применяют антигравий. Он надежно защищает поверхность автомобиля от отлетающих камешков, а также от действия соли.

Хорошо себя зарекомендовал простой вариант предохранения от коррозии — гальваническое покрытие цинком. После зачищения поверхности, предназначенной для оцинковки, к ней прикладывают обмотанную марлей оцинковую пластину из старых гальванических элементов, предварительно смочив ее раствором хлористого цинка. К пластине подводят ток с плюсовой клеммой от аккумулятора, через лампу от фар, и водят по поверхности металла электродом с плюсом. Уже через минуту возникнет ощутимый слой цинка. Даже при толщине в 10 микрон его будет достаточно для защиты кузова.

Если краска возле царапины потемнела, значит туда проникла ржавчина. Чтобы своевременно ее устранить, используют преобразователь ржавчины.

Защита мелких деталей от коррозии

Чтобы гайки, болты, саморезы и другие мелкие части не подвергались коррозии, стоит их покрасить нитрокраской типа ИЦ-25, или же при сборке покрыть оконной замазкой. Нитрокраску вполне может заменить простой пластилин.

Глушитель в процессе эксплуатации тоже начинает ржаветь. Если нет возможности самостоятельно заварить жестяными листами отверстия от коррозии на глушителе, то стоит взять на вооружение надежную и долговечную “технологию”. Для этого пропитывают в силикатном клее кусок ткани и заклеивают им “прореху”.

Однако самым эффективным способом защиты машины от ржавчины остается систематическая проверка всех труднодоступных мест и оперативная очистка кузова от разных загрязнителей. Если заботливо ухаживать за своей машиной, то она будет долго служить.

Основы защиты металлов от коррозии

Неорганические неметаллические защитные покрытия,

В этот вид защиты входят эмали, керамические защитные покрытия, окислы, хроматы, фосфаты и т. д. Защитно-коррозионные свойства этих соединений в зависимости от их природы весьма различны: от практически неограниченной до весьма ограниченной стойкости к химическим воздействиям. Тонкие хроматные пленки, наносимые на цинковые покрытия в процессе пассивации, применяются в горячем цинковании стальных изделий с целью временной защиты от коррозии покрытия (образование так называемой «белой ржавчины»).

Металлические защитные покрытия. Металлические защитные покрытия в зависимости от их электрохимических свойств можно разделить на металлы, имеющие потенциал более положительный, чем потенциал основного металла (например, Ni по Fe), и на металлы, имеющие менее положительный потенциал (например, А1 или Zn по Fe).

Защитные покрытия более положительными металлами являются пассивной защитой от коррозии. Они отделяют поверхность материала от агрессивной среды, являясь сами по себе более устойчивыми к ее воздействию, чем защищаемый ими основной материал. При этом большое значение имеет полная беспористость защитного покрытия, так как в порах в результате контактной коррозии будет происходить растворение основного металла. Если же металл покрытия менее положителен, то и при определенной степени пористости имеется еще достаточная защита от коррозии вследствие активного защитного действия на расстоянии. Степень указанной защиты может быть большей (у цинка) или меньшей в результате сильного пассивирования (у алюминия).

Решающим фактором, определяющим свойства и качество металлических покрытий, является технология их нанесения. При выборе определенной технологии следует учитывать преимущества того или иного метода.

Металлические покрытия, нанесенные путем восстановления из растворов (электролитические и химические металлопокрытия). Для получения металлических защитных покрытий изделие погружают в раствор, содержащий ионы осаждаемого металла; ионы переходят на поверхность изделия в результате реакции восстановле

ния. Восстановление может происходить путем электрохимического катодного процесса (электролитические покрытия) или химически, при помощи восстановительной среды (так называемые химические металлопокрытия). Внешний вид получаемых покрытий может варьироваться от матового до блестящего. Покрытия не образуют с основным металлом промежуточных сплавов и обладают ограниченной толщиной.

Горячие покрытия. Защитное покрытие получают погружением соответственно обработанного изделия в расплав металла. При этом между основным металлом и металлом покрытия образуется промежуточный сплав. В результате термического воздействия могут также измениться физические свойства основного металла, особенно у холоднокатаных листов. Металлом покрытия по этому способу служат преимущественно Fe, Sn и А1.

Металлизация распылением. Пластичные и частично неокисленные капли металла, полученные путем диспергирования металлической проволоки или порошка в газовом или дуговом металлизаторе, наносят на поверхность материала, с которой они схватываются механически и спекаются. При этом возникает более или менее пористая, слоистая структура защитного покрытия; для получения равномерной коррозионной защиты высокого качества слой наносимого покрытия должен быть достаточно толстым. Металлизация распылением применяется в случае обработки изделий больших размеров, которые не могут быть подвергнуты покрытию горячим способом, или при ремонтных работах. В качестве металла покрытия применяют преимущественно А1 и Zn.

Диффузионные покрытия и покрытия способом напыления в вакууме. Покрытия, нанесенные диффузионным способом или напылением, предназначают для особых целей. По сравнению с другими методами нанесения покрытий их применение ограничено.

Механическое плакирование. Механическое нанесение металлического защитного покрытия совместной прокаткой или наваркой также относят к пассивной защите от коррозии, хотя такие покрытия при своей значительной толщине сохраняют свойства металла покрытия и по своему коррозионному поведению не зависят от металла основы.

ВРЕМЕННАЯ ЗАЩИТА ОТ КОРРОЗИИ

Промежуточное место занимает так называемая временная защита от коррозии, которая охватывает все мероприятия по краткосрочной защите изделия, с использованием как активных, так и пассивных методов защиты. Сюда относятся удаляемые лаки, ингибиторы, антикоррозионные покрытия на базе масел, жиров и воска и мероприятия по упаковке. Не следует рассчитывать на возможность получения долгосрочной защиты от коррозии при помощи временных защитных средств.

3. КРИТЕРИИ ВЫБОРА СПОСОБА ЗАЩИТЫ ОТ КОРРОЗИИ

ТРЕБОВАНИЯ К ЗАЩИТЕ ОТ КОРРОЗИИ

К наносимому покрытию предъявляются следующие требования: оно должно быть беспористым, иметь прочное сцепление с основным металлом, быть пластичным, выдерживать внешние механические нагрузки и обладать достаточной стойкостью против коррозии.

Ряд физических, химических, электрохимических, термических и механических свойств покрытия, таких, как поверхностная твердость, сопротивление износу, водостойкость, прочность на изгиб и т. п., должен быть принят во внимание при выборе соответствующего способа защиты от коррозии в зависимости от срока службы конструкции или изделия и коррозионных нагрузок. Кроме того, необходимо знать: способы предварительной обработки поверхности; виды и методы нанесения антикоррозионной защиты (например, при помощи кисти, пистолета, погружением в ванну, в механизированных установках путем накатки, напыления, погружения, и т. д.); вид, количество и толщину слоев защитных покрытий, а при получении защитных покрытий необходимой толщины иметь возможность ее измерения; коррозионную устойчивость защитной системы в атмосферных условиях в районе применения изделия, требования к внешнему виду изделий, стоимость способа защиты, отнесенную к общему сроку службы конструкции или изделия, с учетом сопоставления вариантов затрат по содержанию средств защиты от коррозии. Должен быть учтен срок службы защитного покрытия (длительная или временная защита).

ТРЕБОВАНИЯ К КОНСТРУИРОВАНИЮ С ТОЧКИ ЗРЕНИЯ КОРРОЗИОННОЙ ЗАЩИТЫ

Между методами защиты от коррозии и требованиями, предъявляемыми к конструкции, существует тесная взаимосвязь.

В общем необходимо соблюдать следующие условия: избегать контакта между двумя разнородными металлами при их соединении; принимать меры для предотвращения щелевой коррозии, придавать поверхности оптимальную форму для нанесения защитных покрытий; избегать глубоко профилированных деталей; применять профили с наименьшим числом углов и выступов. Угловому профилю следует отдавать предпочтение перед швеллером, а швеллер предпочесть двутавру, учитывать такие усиливающие коррозию факторы, как эрозия, кавитация, вибрация, турбулентность, местный разогрев и т. д.

Расположение деталей и конструкций должно препятствовать проникновению агрессивных сред или ограничивать их воздействие. Недоступные места конструкций должны быть основательно защищены от коррозии. При правильном, с точки зрения защиты от коррозии, конструировании необходимо учитывать экономичность мероприятий по уходу за конструкцией.

ТРЕБОВАНИЯ К КОНСТРУКЦИЯМ ИЛИ ИЗДЕЛИЯМ

Для оптимального решения вопросов защиты от коррозии надо принимать во внимание технологию изготовления установок, конструкций или изделий и возможности нанесения защитного покрытия в зависимости от: массы изделий или соотношения их величин; числа изделий, деталей или конструкций, подлежащих изготовлению; состояния поверхности, расположения деталей или изделий в общей конструкции; условий транспорта изделий, их монтажа и эксплуатации с учетом механических нагрузок, коррозионных воздействий и т. п., а также заданного срока службы изделия или конструкции.

Автор: Администрация Общая оценка статьи: Опубликовано: 2011.09.04 Обновлено: 2020.03.04

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Защита от коррозии: промышленные и бытовые способы (+32 фото)

Металлы вследствие своей высокой прочности, пластичности, износоустойчивости, тепло- и электропроводности являются наиболее важными конструкционными материалами.

В процессе эксплуатации в результате воздействия окружающей среды происходит их разрушение, так называемая коррозия.

Потери от коррозии в ведущих индустриальных странах составляют около 3-5% валового национального продукта, а затраты на возмещениекоррозионных потерь во всем мире исчисляются сотнями миллиардов долларов, поэтому раздел «Коррозия металлов и методы защиты их от коррозии» является одним из важнейших в курсе химии для инженерных специальностей.

Обычно корродируют металлы, которые встречаются в природе не в самородном состоянии, как Au, Pt, а в виде различных руд. На извлечение этих металлов из природных соединений расходуется значительное количество энергии (Ме +n + n? → Me 0 ; ΔG>0), которая накапливается в металлах, делая их термодинамически неустойчивыми, химически активными веществами (Ме 0 – n? → Me + n ; ΔG 0).

Механическое разрушение металлов, происходящее по физическим причинам, не называют коррозией, а называют эрозией, истиранием, износом.

По характеру разрушения поверхности коррозию подразделяют на сплошную и местную. Сплошная коррозия подразделяется на равномерную, если процесс окисления происходит по всей поверхности металла с одинаковой скоростью, и неравномерную – процесс окисления происходит по всей поверхности с различной скоростью на различных участках металла.

Местная коррозия подразделяется на коррозию пятнами, точечную, питтинг (углубленно-точечную), межкристаллитную (наиболее опасна, т.к. ослабляет связи между зернами структуры сплавов), растрескивающуюся, селективную (избирательную).

По механизму протекания различают следующие виды коррозии:

– электрохимическая (концентрационная, контактная, электрокоррозия);

– особые виды (биологическая, радиационная, ультразвуковая).

По характеру дополнительных воздействий различают:

– коррозию под влиянием механических напряжений;

– коррозию при трении;

– кавитационную коррозию (возникает при одновременном коррозионном и ударном воздействии агрессивной среды, когда лопаются пузырьки воздуха при работе лопастей гребного винта, роторов насосов).

Рассмотрим более подробно виды коррозии по механизму протекания.

Под химической коррозией понимают разрушение металлов окислением в окружающей среде без возникновения электрического тока в системе.

Газовая коррозия протекает при обычных условиях, но чаще при высоких температурах. Наблюдается при разливе расплавленных металлов, их термической обработке, ковке, прокатке, сварке и т.д.

Самый распространенный случай газовой коррозии – взаимодействие металла с кислородом:

Образующаяся при такой коррозии оксидная пленка в ряде случаев играет защитную функцию. Для этого она должна быть сплошной, беспористой, иметь хорошее сцепление с металлом, обладать твердостью, износостойкостью и иметь коэффициент термического расширения, близкий к этой величине для металла. Все эти качества оксидной пленки можно оценить по фактору Пиллинга-Бэдвордса (a). Металлы (щелочные, щелочноземельные), у которых a2O3, ZnO, NiO и т.д.).

При значениях a значительно больше единицы пленки получаются неслошные, лекго отделяющиеся от поверхности металла (железная окалина). Коррозионно-активными газами, кроме кислорода, являются: угарный газ, углекислый газ, сернистый ангидрид, азот, его оксиды и галогены. Например, при разливе расплавленного алюминия, происходит его взаимодействие не только с кислородом, но и с азотом воздуха.

Жидкостная коррозия протекает, как правило, в жидких неэлектролитах: спиртах, хлороформе, бензоле, бензине, керосине и других нефтепродуктах. Ускоряет процесс жидкостной коррозии сера,кислород, галогены, влага, атакже повышенная температура (коррозия поршней в двигателях внутреннего сгорания),что можно описать уравнениями : Me(II) + R1 – S – R2 → MeS + R1 – R2

Me(I) + nR – Cl → MeCl + 1/2nR – R ,

где R1 – S – R2и nR – Cl углеводороды, содержащие серу и хлор.

Электрохимическая коррозия наиболее распространенный вид коррозии. Это разрушение деталей, машин, конструкций в грунтовых, речных, морских водах, под влиянием воды (росы), под воздействием смазочно-охлаждающих жидкостей, используемых при механической обработке металлов, атмосферная коррозия и т.д.

Электрохимическая коррозия – это пространственно разделенный окислительно-восстановительный процесс разрушения металла, протекающий в среде электролита, с возникновением внутри системы электрического тока, называемого коррозионным током.

Рассмотрим химизм атмосферной коррозии стального изделия. Сталь – это сплав железа с углеродом, в котором углерода менее 2%, например, цементит (Fe3C4). При электрохимической коррозии во влажном воздухе (О2 + 2Н2О) железо и цементит образуют микрогальванопару, в которой роль анода выполняет железо, а цементит – роль катода.

Схема процесса:

Анодный процесс: Fe 0 – 2? → Fe 2+ 2 поляризация

Катодный процесс: 2H2O + O2 + 4? → 4OH – 1 деполяризация

Суммарное уравнение коррозионного процесса разрушения стального изделия, находящегося во влажном воздухе:

Для железа более характерна степень окисления (3+), поэтому процесс окисления идет дальше:

4Fe(OH)2+2H2O+O2→4Fe(OH)3, образующийся Fe(OH)3 при нагревании может терять воду.

Fe (OH)3 H2O + FeOOH.

То есть продуктами коррозии железа (ржавчина) является смесь различных соединений. Если учесть, что в воздухе присутствуют углекислый газ, сернистый газ, следовательно, могут образовываться и соли железа.

Часто из-за различной рельефности металлических конструкций, в том числе и стальных, на некоторых участках скапливается вода, при этом происходит так называемая концентрационная коррозия, обусловленная различной концентрацией деполяризатора кислорода (в случае атмосферной коррозии), водорода (в кислой среде) на различных участках металла. Там, где концентрация деполяризатора больше (края капли воды), формируется катодный участок, где концентрация деполяризатора меньше (центр капли воды) – анодный участок (рис.15).

После высыхания капли в её центре обнаруживается углубление, а иногда даже и отверстие (для пластин толщиной 0,1-0,2 мм). Такие процессы часто наблюдаются при атмосферной и почвенной коррозии железных и стальных изделий (троса, стопки листов и т.д.) – точечная коррозия, переходящая в питтинг. Следует отметить, что хотя конечный продукт коррозии (ржавчина) нерастворим, однако он не препятствует процессу растворения металла, поскольку формируется за пределами анодного участка (на границе соприкосновения его с катодами) в виде кольца внутри капли.

На практике часто встречаются случаи, когда металлы различной активности находятся в контакте друг с другом, образуя гальванопары. Кроме того, технические металлы содержат примеси других металлов, сплавы содержат различные металлы. Такой металл или сплав, находясь в среде электролита, дает множество микро – и макрогальванопар, в которых анодом является более активный металл, т.е. металл с меньшим значением электродного потенциала, именно он и подвергается коррозии.

Рассмотрим случай контактной коррозии с водородной деполяризациейцинка и меди, в сернокислой среде. Цинк и медь, имеют различные значения электродных потенциалов. Более активным в этой гальвано паре является цинк (Е 0 Zn2+/Zn = -0,76 В), он имеет меньшее значение электродного потенциала и будет анодом, т. е именно цинк будет подвергаться коррозионным процессам, менее активным металлом является медь (Е 0 Cu2+/Cu = +0,34 В), она будет катодом.

Запишем схему: (А) Zn | H2SO4 | Cu (K)

Анодный процесс: Zn 0 – 2? → Zn 2+

Катодный процесс: 2Н + + 2? → Н2 деполяризатор

Суммарное ионное уравнение: Zn + 2H + → Zn 2+ + H2

Факторы, влияющие на скорость коррозии:

а) напряжение и деформация при механической обработке металлов;

б) перемешивание агрессивной среды;

в) дифференциальная аэрация;

д) кислотность среды (рН).

Рассматривая фактор (д) обратите внимание, что электродные потенциалы металлов существенно зависят от состава электролита и рН среды. Так, в случае контактной (Al-Zn) коррозии в 1М растворе HCl

,

возникает гальвано пара, в которой роль анода выполняет Al, а катода- Zn, схема такого процесса: (А) Al | HCl | Zn (K)

В 0,1 М растворе HCl в этом случае большую активность имеет цинк, он будет в гальвано паре анодом, алюминий – катодом, а схему запишем так: (А) Zn | HCl | Al (K)

Электрокоррозия – протекает под действием блуждающих токов, возникает от постоянных источников тока (электротранспорт, трансформаторы, линии электропередач). Рассматривая коррозию под действием блуждающих токов, надо помнить, что место выхода тока – будет анодным участком, входа тока – катодным, участок протекания тока – нейтральной зоной. Радиус действия блуждающих токов может достигать нескольких десятков километров. Ток силой 1А за год разрушает до 3 кг алюминия, 9 кг железа, 11 кг цинка или меди, 34 кг свинца.

ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Потери от коррозии в мировой экономике огромны. Около 1/3 вводимого в эксплуатацию металла подвергается коррозии, при этом примерно 10% теряется безвозвратно.

Борьба с коррозией осуществляется различными методами. Наиболее рациональный и надежный путь – изготовление аппаратов и машин изкоррозионно-стойких металлических или неметаллических материалов,но из-за дороговизны таких материалов, чаще используют дешевые и доступные металлы с последующей защитой их от коррозии. Полностью избежать коррозии невозможно, но, применив определенные методы защиты, можно снизить ее воздействие.

Можно условно выделить следующие группы методов защиты металлов от коррозии:

1. Создание рациональных конструкций, т.е. таких, которые не имеют застойных зон и других мест скопления влаги, грязи и других коррозионно-агрессивных сред, допускают быструю очистку и аэрацию.

2. Легирование металлов. Это эффективный, хотя обычно дорогой метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты (Cr, Ni, W, Si, V, Mo, Re и другие), вызывающие пассивирование металла. Механизм защиты (например, в нержавеющих сталях) состоит в образовании на поверхности плотных оксидных слоев, типа шпинелей состава NiO . Cr2O, FeO . Cr2O3, которые оказываются более устойчивыми, чем просто оксиды хрома или никеля.

3. Создание аморфных структур металлов. Путь к этому способу защиты открыла сверхбыстрая закалка. Расплавленный металл из тигля подают в тончайший зазор между двумя массивными валками и подвергают формированию и резкому охлаждению. В этих условиях атомы не успевают выстраиваться в присущие металлам кристаллические решетки, фиксируется «хаос атомов», свойственный расплавленному металлу. В результате получается аморфная структура, подобная стеклу, резко возрастает коррозионная устойчивость металлов.

4. Защитные покрытия – самый распространенный метод защиты металлов от коррозии. Смысл их нанесения – изоляция от агрессивной среды. Различают неметаллические и металлические покрытия.

а) неметаллические покрытия получают нанесением на поверхность металла лака, краски, смолы, олифы, эмали или стеклоэмали. Поверхность металла покрывают также резиной, эбонитом, полимерными материалами, цементом, бетоном, оксидными пленками: ZnO, Al2O3 (оксидирование) и нитридными пленками: Fe4N, Fe2N (азотирование). Покрыть поверхность металла можно осаждением нерастворимых фосфатов этого металла: Fe(H2PO4)2 + 2 Fe 2+ ® Fe3(PO4)2¯ + 4H ( фосфатирование) или насыщением поверхности металла углеродом (цементация).

б) защитные покрытия металлами. Для этого используют коррозионно-устойчивые металлы (Sn, Zn, Al, Au, Ag, Ni, Cr и др.) Различают анодные и катодные металлические покрытия. Если защищаемый металл покрывают более активным металлом, то такое покрытие называют анодным. При нарушении покрытия разрушается металл покрытия. Рассмотрим это на примере оцинкованного железа. Составим схему коррозионного разрушения.

A: Zn 0 – 2? → Zn 2+ 2

Если защищаемый металл покрыт менее активным металлом, например, железо покрыто оловом, то такой вид покрытия называется катодным. При нарушении покрытия разрушается основной металл. Рассмотрим этот случай коррозии.

(А) Fe | 2H + | Sn (K)

A: Fe 0 – 2? → Fe 2+ 1

Fe + 2H + → Fe 2+ + H2

5. Электрохимические методы защиты:

а) защита внешним потенциалом);

б) анодная (протекторная).

Защита внешним потенциалом (чаще катодная) осуществляется подключением защищаемой конструкции к отрицательному полюсу (катоду) внешнего источника тока с очень малым напряжением (0,1 В). К положительному полюсу подсоединяется лом, который и разрушается. Этот вид защиты используют для металлических сооружений: трубопроводов, резервуаров и т.д.

Протекторная защита заключается в том, что к изделию, подвергающемуся электрохимической коррозии, подключают деталь – протектор из более активного металла, чем металл изделия. Протектор будет разрушаться, а изделие останется неизменным. Применяют в паровых котлах, для защиты корпусов морских и речных судов, трубопроводов, рельсов и т.д.

Задача. Приведите пример протекторной защиты в электролите, содержащем растворенный кислород. Составьте уравнения анодного и катодного процессов и вычислите ЭДС реакции.

Решение. Протекторная защита осуществляется путем присоединения к железу более активного металла, обычно цинка, магния и их сплавов. Таким образом, создается искусственный микрогальванический элемент. Чаще всего используют протекторную защиту в растворах электролитов (паровые котлы, химические аппараты), в морской воде и в почве (защита трубопроводов). Рассмотрим протекторную защиту от почвенной коррозии:

Среда нейтральная или слабощелочная, так как концентрация солей невелика. В этом, созданном нами, коррозионном элементе анодом служит протектор (цинк), он растворяется.

Анод: Zn 0 – 2 ® Zn 2+ .

Электроны передаются на железо. Деполяризатором в этом случае является кислород.

Катод: O2 + 2H2O + 4® 4OH – ; E 0 = 0,40 B.

ЭДС реакции определяем: DЕ = Екатода – Еанода = 0,40 – (-0,75) = 1,16 В.

Ответ: протектор Zn, он окисляется и защищает железо; DЕ = 1,16 В.

6. Воздействие на агрессивную среду. Для замедления коррозии в агрессивную среду вводят вещества, называемые ингибиторами (замедлителями). Это чаще всего органические вещества, пассивирующие поверхность металла: тиомочевина C(NH2)2S, диэтиламин C2H5 — NH — C2H5, уротропин (CH2)6N4, неорганические вещества SiO3 2- , NO2 – , Cr2O7 2- , а также освобождение воды от растворенного в ней кислорода (воду фильтруют через слой железных опилок). Либо удаляют активаторы коррозии, например, ионы Cl – , Br – , F – , SO4 2- , NO3 – .

Литература:

1. Фролов В.В. Химия. Гл.V, §51-56.

2. Лучинский Г.П. Курс химии. Гл.V, §8-12, гл. VI, §13-18

3. Общая химия под ред. Соколовской Е.М. и др. Гл.6, §1-11.

4. Абраменко В.Л. Методические указания к самостоятельному изучению темы “Коррозия и защита металлов от нее”. Луганск, 1991 г.

Как снизить износ теплоэнергетического оборудования

Автор: Денис Гудков, специально для Equipnet.ru
Фотографии с сайтов test.kwark.ru, dor.ru, rusitc.ru

Непрерывная эксплуатация теплоэнергетического оборудования (паровые котлы, турбины, трубопроводы, соединительные узлы, дополнительное специальное оборудование и т. п.) приводит к возникновению и распространению очагов коррозии металлов оборудования и теплопроводов. Часть котлов (до 70%), установленных на ТЭЦ, выводится в резерв (летнее время) – детали такого оборудования могут быть подвержены атмосферной коррозии. Это требует обеспечения их защиты и консервирования (ПТЭ электростанций и сетей РФ).

В системах бытового горячего и оборотного водоснабжения коррозия металлов является основной причиной ухудшения качества и органолептических свойств воды. В зависимости от её химического наполнения и температуры, вероятность возникновения и скорость распространения коррозии существенно различается.

Выделяют механические, физические и химические методы защиты теплоэнергетического оборудования от коррозии. Они различны по степени эффективности и применению. При механических используют современные материалы и устройства, обеспечивающие удаление из теплоносителя (воды) примесей, провоцирующих появление ржавчины. В последнее время теплопроводы комплектуют трубами из молекулярно сшитого полиэтилена (ПЕКС, от англ. «PEX» – polyethylene-X). Согласно экспертному заключению института химической физики РАН, их технические характеристики (например, из ПЕКС-6 компании MICROPOL, Великобритания) значительно увеличивают допустимые нагрузки и расчетный срок службы. Другой используемый материал, хлорированный поливинилхлорид (ХПВХ), по техническим характеристикам даже превосходит ПЕКС, срок гарантированной службы ХПВХ составляет 50 лет (в 3 раза и более превышает срок эксплуатации металлических труб (10-15 лет). Применение труб из ПЕКС или ХПВХ в практике водоснабжения частично решает проблему коррозии, поскольку данные материалы инертны к действию многих химических веществ, в том числе и агрессивных.

Однако, использование данных материалов для изготовления другого теплоэнергетического оборудования, например котлов, не представляется возможным. Для предотвращения коррозии металлических частей такого оборудования применяют методы снижения агрессивности теплоносителя – локализуют растворенные в воде О2, СО2 и другие газы. Большое количество углекислого газа может образовываться в системах с H-катионированием или при подкислении воды. Процедура локализации свободной углекислоты называется декарбонизацией, а прибор – декарбонизатором. Принцип его работы таков: при продувании воздуха через теплоноситель углекислый газ, растворенный в воде, распределяется между жидкой и газообразной фазами; избыток его удаляется с последней.

Существуют башенные декарбонизаторы и струйные (более современные). Преимущества струйных декарбонизаторов: габаритные размеры в 10 раз/вес в 40 раз меньше обычных башенных, эффективность действия выше. Помимо удаления углекислоты из раствора теплоносителя, декарбонизаторы окисляют двухвалентное железо, растворенное в воде до трехвалентного и, удаляют его механическими фильтрами.

Декарбонизаторы – это узкоспециальное оборудование, каждая модель производится на заказ, исходя из требований потребителя. Общие технические характеристики струйных декарбонизаторов, производимых, например, ООО «Кварк Промышленные Энергосберегающие Системы»:

  • номинальная производительность: 1 – 600 т/ч,
  • исходная концентрация CO2: до 300 мг/кг,
  • концентрация CO2 на выходе 3-5 мг/кг,
  • исходная концентрация двухвалентного железа: до 50 мг/кг,
  • концентрация железа на выходе: до 0,3 мг/кг,
  • давление воды на входе: 0,2 – 0,6 МПа,
  • температура обрабатываемой воды: 5 – 80°С,
  • капельный влагоунос: не более 0,1% от расхода.

Все модели изготавливаются из нержавеющей стали и требуют минимального обслуживания.

Процесс дэаэрации играет решающую роль в данном вопросе. Деаэраторы окончательно удаляют растворенные газы из воды (остатки оксида углерода, кислород). Наиболее эффективным и универсальным методом является термическая деаэрация. Независимо от производителя различают деаэраторы вакуумные (рабочее давление 0,0016 – 0,05 МПа) и атмосферные (0,12 МПа). Вакуумные деаэраторы ООО «Кварк» (0,012 МПа) со встроенным охладителем выпара обладают производительностью 1 – 300 т/ч при рабочей температуре воды 50 – 90°С. Вакуумные деаэратовы ОАО «Сарэнергомаш» (0,0016 МПа) (ДВ-X, X – производительность в т/ч) могут обработать от 1,5 до 800 т/ч при рабочей температуре воды 40 – 80°С. Более низкое рабочее давление, а также наличие подогрева деаэрируемой воды с помощью перегретого пара позволяет снизить рабочую температуру устройства, уменьшить затраты на деаэрацию и повысить эффективность процесса.

Атмосферные деаэраторы ООО «Кварк» обрабатывают до 400 т/ч воды, а ОАО «Сарэнергомаш» – до 200 т/ч, но при этом их рабочая температура составляет 100 – 109°С. Нагрев воды в деаэраторах ООО «Кварк» отсутствует, что предполагает наличие дополнительного нагревательного устройства. Нагрев большого количества воды может оказаться менее выгодным, чем создание пониженного давления, поэтому выбор типа деаэратора должен быть обусловлен экономическими расчетами.

К физическим методам защиты металлов относят протекторную защиту внутренней поверхности труб, лежащую в основе действия прибора IOREX (ОАО «Водоканал-Инжиниринг» и фирма «Sirius Co., Ltd.»). Опытно-промышленные испытания данного прибора продемонстрировали существенное снижение коррозии магистралей водопроводной воды.

Прибор IOREX – это полый латунный цилиндр с алюминиевым и углеродным (в виде углеволокна) электродами внутри. Вода, проходящая через электроды, выступает в роли электролита и формирует батарею Вольта с потенциалом 0,7 – 1 В. В основе антикоррозионного действия данного устройства лежит правило протекания окислительно-восстановительных реакций в гальваническом элементе – в первую очередь окисляется металл, имеющий наименьшее значение электрохимического потенциала. То есть, сначала будет окисляться алюминий, из которого сделан электрод, а не железо или медь, из которых изготовлены трубы. В процессе такой электрохимической обработки воды, присутствующий кислород под действием магнитного поля образует с железом ферромагнитные оксиды, предохраняющие поверхность металла от действия агрессивных веществ. Кроме того, согласно данным производителя, прибор IOREX оказывает дезинфицирующее действие на воду, предотвращая развитие микроорганизмов, а также улучшает ее реологические свойства.

На сегодняшний день разработаны, сертифицированы и доступны к реализации устройства для систем водоснабжения с различным диаметром/длиной труб, скоростью потока воды. Для бытового применения предназначены приборы, снабженные резьбой, IOR-SH, -APT, -15, -20 и -25 с внутренним диаметром от 8 до 25 мм, внешним диаметром от 40 до 115 мм и длиной от 150 до 520 мм. Вес устройства находится в диапазоне 0,5 – 9 кг. Максимальная скорость потока, на которую рассчитаны данные модификации устройств, варьируется от 0,3 до 3,5 м3/ч, а длина магистрали – от 120 до 350 м.

Для промышленного применения предназначены приборы, снабженные фланцами, IOR-32, -40, -50, -65, -80, -100, -125, -150, -200, -250 и -300 с внутренним диаметром от 32 до 300 мм, внешним диаметром от 125 до 400 мм и длиной от 550 до 800 мм. Вес такого устройства может достигать 350 кг. Максимальная скорость потока, на которую рассчитаны данные модификации устройств, варьируется от 5,8 до 500 м3/ч, а длина магистрали – от 470 до 2550 м. От типа прибора, интенсивности эксплуатации системы водоснабжения и ее технического состояния, срок службы прибора IOREX может достигать 10 лет, а длина обслуживаемой магистрали – 9000 м.

Наиболее эффективными методами предотвращения коррозии теплоэнергетического оборудования считаются химические методы, основанные на применении ингибиторов коррозии металлов (сталей, алюминия, цинка, меди и их сплавов). В последнее время применяют фосфорорганические комплексоны и/или комплексонаты (их соли), некоторые органические вещества и композиции на их основе. Эти вещества одновременно являются и ингибиторами солеотложений.

К применению в воде хозяйственно-питьевого и хозяйственно-бытового водопользования разрешены комплексонаты ОЭДФ-цинк дозой до 5 мг/л (гигиенический сертификат №61.РЦ6.243.П899.6.00 от 15.06.2000, ТУ 2439-001 – 24210860-97от 12.04.1997) и НТФ-цинк дозой до 1 мг/л (гигиенический сертификат №61.РЦ.2.243.П.612.4.99 от 12.04.1999, ТУ 2439-002 -24210860-99от 01.02.1999). В закрытых системах теплоснабжения (отопление) концентрация комплексонатов не нормируется, что является одной из причин, по которой запрещено использовать воду из систем бытового отопления для питья.

ОЭДФ-цинк: однородная жидкость от бесцветного до желто-зеленого цвета, может иметь мутный вид, массовая доля основного вещества 20-25%, массовая доля цинка 3,5-4,5%, плотность при +20°С 1,1 – 1,3 г/см3, показатель активности водородных ионов рН 7,0-8,0.

НТФ-цинк: жидкость от желтого до светло-коричневого цвета, представляет собой 25%-ный водный раствор натриевой соли цинкового комплекса оксиэтилидендифосфоновой кислоты, имеет плотность в пределах 1,20-1,30 г/см3, показатель активности водородных ионов pH 6,5 – 10,0.

Для консервации резервных котлов, турбин, деаэраторов, испарителей, энергоблоков на ТЭЦ чаще всего используют октадециламин (ОДА) высокой степени очистки с кондиционирующими добавками: на внутренних поверхностях оборудования формируется молекулярная пленка амина, предохраняющая металл от воздействия кислорода, углекислого газа и других коррозионно-агрессивных веществ.

Применение ингибиторов коррозии позволяет для некоторых типов теплоносителей исключить стадии умягчения, декарбонизации и деаэрации, а также осуществить отмывку системы циркуляции теплоносителя, иногда даже в ходе рабочего процесса без снижения используемой мощности (отмывка «на ходу»).

Эффективности химических методов защиты металла от коррозии сопутствует сложность их применения. Не существует универсального реагента, пригодного для отмывки теплоэнергетического оборудования – в каждом конкретном случае необходим индивидуальный выбор ингибитора коррозии, его концентраций. В случае неправильного выбора возможно не только снижение эффективности действия химических реагентов и фосфорорганических соединений, но и ускорение коррозионных процессов в системе, возникновение и разрастание различного рода биоотложений (биокоррозия). Вывод: применение химических реагентов возможно только с привлечением квалифицированных специалистов. Совокупное и грамотное применение методов защиты теплоэнергетического оборудования от коррозии позволяет значительно снизить износ системы и увеличить срок ее эксплуатации.

Добавить комментарий